Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biomed Res Int ; 2022: 5904261, 2022.
Article in English | MEDLINE | ID: covidwho-1799190

ABSTRACT

The manuscript mainly aimed at providing clues on improving the innate immunity of coronavirus patients and safeguarding them from both new mutant strains and black fungus infections. Coronavirus is readily mutating from one variant to another. Among the several variants, we selected SARS-CoV-2 B.1.1.7 in this study. Upon infection of any virus, ideally, the phagocytic cells of the host engulf and destroy the virus by a mechanism called phagocytosis. However, compromised immunity impairs phagocytosis, and thus, restoring the immune system is crucial for a speedy recovery of infected patients. The autophagy and activation of Toll-like receptor-4 are the only ways to restore innate immunity. Recently, immunocompromised COVID-19 patients have been suffering from the coinfection of black fungus. Rhizomucor, a black fungus species, causes more than 75% of cases of mucormycosis. Here, we present the results of molecular docking studies of sixty approved antiviral drugs targeting receptors associated with the SARS-CoV-2 B 1.1.7 variant (PDB id: 7NEH), activating the innate immune system (PDB id: 5YEC and 5IJC). We also studied the twenty approved antifungal drugs with Rhizomucor miehei lipase propeptide (PDB id: 6QPR) to identify the possible combination therapy for patients coinfected with coronavirus and black fungus. The ledipasvir showed excellent docking interactions with the 7NEH, 5YEC, and 5IJC, indicating that it is a perfect candidate for the treatment of COVID-19 patients. Itraconazole showed significant interaction with 6QPR of Rhizomucor miehei, suggesting that itraconazole can treat black fungus infections. In conclusion, the combination therapy of ledipasvir and itraconazole can be a better alternative for treating COVID-19 patients coinfected with black fungus.


Subject(s)
COVID-19 Drug Treatment , Coinfection , Benzimidazoles , Coinfection/drug therapy , Fluorenes , Humans , Itraconazole/therapeutic use , Molecular Docking Simulation , Rhizomucor , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL